20200924160093456420600974.png

个人简介


      王圣凯,北京大学工学院助理教授、特聘研究员、博士生导师,湍流与复杂系统国家重点实验室成员,北京大学工程科学与新兴技术高精尖中心仿真与软件应用部Co-PI。本科毕业于北京大学,硕士毕业于美国斯坦福大学,博士毕业于斯坦福大学并获得机械工程博士学位以及电气工程博士辅修学位,后于斯坦福大学高温气体动力学实验室从事博士后研究。主要研究领域为高温热流体的精密激光诊断方法,及其在燃烧学、空气动力学实验研究中的应用。目前已在其研究领域内的国际权威期刊上发表SCI论文33篇,研究成果已被150个国际研究机构引用750次以上。作为主要成员参与美国Department of Energy (DOE)National Science Foundation (NSF)Air Force  Office of Scientific Research (AFOSR)Office of Naval Research (ONR)等多个项目。


代表性著作


1. Y. Li*, S. Wang, C. L. Strand, R. K. Hanson, Development of a Stark shift measurement technique using excited state oxygen atoms to determine electron number density in shock heated O2/Ar above 10,000 K, Plasma Sources Science and Technology, in review, 2020

2. Y. Li*, S. Wang, C. L. Strand, R. K. Hanson, Two-temperature collisional-radiative modeling of partially ionized O2-Ar mixtures over 8000 – 10000 K behind reflected shock waves, Journal of Physical Chemistry A, 124 (2020) 3687–3697

3. Y. Ding, S. Wang*, R. K. Hanson, Sensitive and interference-immune formaldehyde diagnostic for high-temperature reacting gases using two-color laser absorption near 5.6 µm, Combustion and Flame, 213 (2020), 194-201

4. S. Wang*, R. K. Hanson, Quantitative 2-D OH thermometry using spectrally-resolved planar laser-induced fluorescence, Optics Letters, 44 (2019), 578-581

5. S. Wang*, D. F. Davidson, R. K. Hanson, Shock tube measurements of OH time-histories in benzene, toluene, ethylbenzene and xylene oxidation, Proceedings of the Combustion Institute, 37 (2019), 163-170

6. S. Wang*, R. K. Hanson, Ultra-sensitive spectroscopy of OH radical in high-temperature transient reactions, Optics Letters, 43 (2018) 3518-3521

7. S. Wang*, R. K. Hanson, High-sensitivity 308.6-nm laser absorption diagnostic optimized for OH measurement in shock tube combustion studies, Applied Physics B, 124 (2018) 37-43

8. S. Wang*, D. F. Davidson, R. K. Hanson, A shock tube and laser absorption study of CH2O oxidation via simultaneous measurements of OH and CO, Journal of Physical Chemistry A, 121 (2017) 8561–8568

9. S. Wang*, D. F. Davidson, J. B. Jeffries, R. K. Hanson, Time-resolved sub-ppm CH3 detection in a shock tube using cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser, Proceedings of the Combustion Institute, 36 (2017) 4549-4556.

10. S. Wang*, D. F. Davidson, R. K. Hanson, Shock tube measurements for the rate constants of long, branched, and unsaturated aldehydes with OH at elevated temperatures, Proceedings of the Combustion Institute, 36 (2017) 151-160.

11. S. Wang*, D. F. Davidson, R. K. Hanson, Shock tube measurement for the dissociation rate constant of acetaldehyde using sensitive CO diagnostics, Journal of Physical Chemistry A, 120 (2016) 6895-6901.

12. S. Wang, D. F. Davidson*, R. K. Hanson, Improved shock tube measurement of the CH4 + M = CH3 + H + M rate constant using UV cavity-enhanced absorption spectroscopy of CH3, Journal of Physical Chemistry A, 120 (2016) 5427-5434.

13. S. Wang*, K. Sun, D. F. Davidson, J. B. Jefferies, R. K. Hanson, Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube, Optics Express, 24 (2016) 308-318.

14. S. Wang*, D. F. Davidson, R. K. Hanson, High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube. Proceedings of the Combustion Institute, 35 (2015) 473-480.

15. S. Wang, D. F. Davidson*, R. K. Hanson, R. K. High-temperature laser absorption diagnostics for CH2O and CH3CHO and their application to shock tube kinetic studies. Combustion and Flame, 160 (2013) 1930-1938.